Python Programming

Fonksiyonlar

Hedefler

Programcilarin programlari neden birlikte calisan islev kumelerine ayirdigini
anlamak.

Python'da yeni fonksiyonlar tanimlayabilmek.

Python'da fonksiyon cagrilarinin ve parametre gecislerinin detaylarini
anlamak.

Kod tekrarini azaltmak ve program modulerligini artirmak i¢in iglevleri kullanan
programlar yazmak.

Fonksiyonlarin Fonksiyonu

Simdiye kadar dort farkl iglev turtu gorduk:
— Programlarimiz main() adi verilen tek bir islevden olusur.
— Yerlesik Python islevleri (mutlak)
— Standart kitapliklardan (math.sqrt) gelen iglevler
— Grafik modulunden iglevler (p.getX())

Birden fazla yerde benzer veya ayni kodun olmasi bazi dezavantajlara sahiptir.
— Birinci sorun: ayni kodu iki veya daha fazla yazmak.
— Ikinci sorun: Bu ayni kod iki ayr1 yerde tutulmalidir.

Islevler, kod tekrarini azaltmak ve programlarin daha kolay anlasiimasini ve sirdiriimesini
saglamak icin kullanilabilir.

Islevler, Gayri Resmi Olarak

Bir fonksiyon bir alt program gibidir, bir programin icindeki kuguk bir programdir.
Temel fikir — bir dizi ifade yaziyoruz ve sonra bu diziye bir isim veriyoruz.

Daha sonra isme basvurarak bu diziyi istedigimiz zaman calistirabiliriz.
Programin bir fonksiyon olusturan kismina fonksiyon tanimi denir.

Fonksiyon bir programda kullanildiginda, tanimin ¢agrildigini soyleriz.

Fonksiyon Olusturma

« Bir fonksiyon, yalnizca cagrildiginda calisan bir kod blogudur.

« Parametreler olarak bilinen verileri bir fonksiyona iletebilirsiniz.

« Bir fonksiyon, sonuc olarak verileri dondurebilir.

« Bir fonksiyonu ¢cagirmak icin, fonksiyonun adini ve ardindan parantez kullanilir.

def my_function():
print("Hello from a function")

my_function()

Functions, Informally

* Happy Blrthday lyrics...

def mainl (

("Happy birthday to youl!")
("Happy birthday to you!")
print ("Happy birthday, dear Fred...")

(

print ("Happy birthday to you!")
» Gives us this...
mainl ()

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
Happy birthday to you!

Functions, Informally

There’s some duplicated code in the program! (print ("Happy birthday to you!"))

We can define a function to print out this line:
def happy () :
print ("Happy birthday to you!")

With this function, we can rewrite our program.

Functions, Informally

The new program —
def singFred() :

happy ()
happy ()
print ("Happy birthday, dear Fred...")
happy ()
Gives us this output —
>>> singFred /()
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
Happy birthday to you!

Functions, Informally

« Creating this function saved us a lot of typing!
« What if it’s Lucy’s birthday? We could write a new singLucy function!
def singLucy () :
happy ()

happy ()
print ("Happy birthday, dear Lucy...")
(

happy ()

Functions, Informally

We could write a main program to sing to both Lucy and Fred
def main () :

singFred ()
print ()
singLucy ()

This gives us this new output
main ()

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred..
Happy birthday to you!

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Lucy...
Happy birthday to you!

10

Functions, Informally

Bu harika calisiyor! Ama... hala cok fazla kod tekrari var.
singFred ve singlLucy arasindaki tek fark, uctncu print ifadesindeki addir.
Bu iki rutin, bir parametre kullanilarak birlikte daraltilabilir.

11

Parametreler

Bilgi fonksiyonlara parametreler yoluyla gecirilir.

Parametreler, fonksiyonun adindan sonra parantez icinde belirtilir. Istediginiz kadar
parametre ekleyebilirsiniz, sadece virgulle ayirin.

Asagidaki ornekte fonksiyonun (fname) adinda bir parametresi vardir. fonksiyon
cagrildiginda, girilen bilgileri fonksiyona parametre olarak gonderilir.

def my_function(fname):
print(fname + " Refsnes")

my_function("Emil")
my_function("Tobias")
my_function("Linus")

Varsayilan Degerli Parametre

* Asagidaki ornek, varsayilan bir parametre degerinin nasil kullanilacagini gosterir.
Fonksiyonu parametresiz olarak c¢agirirsak, varsayilan degeri kullanir.

def my_function(country = "Norway"):
print("l am from " + country)

my_function("Sweden")
my_function("India")
my_function()
my_function("Brazil")

Functions, Informally

The generic function sing
def sing(person):
happy ()
happy ()
print ("Happy birthday, dear", person + ".")
happy ()
Bu islev, “person” adli bir parametre kullanir. Parametre, islev ¢agrildiginda baslatilan bir

degiskendir.

14

Functions, Informally

* Our new output —

>>> sing ("Fred")

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!

* \We can put together a new main program!

15

Functions, Informally

* Our new main program:

def main () :
sing ("Fred")
print ()
sing ("Lucy")

» Gives us this output:

>>> main ()

Happy
Happy
Happy
Happy

Happy
Happy
Happy
Happy

birthday to you!
birthday to you!
birthday, dear Fred.
birthday to you!

birthday to you!
birthday to you!
birthday, dear Lucy.
birthday to you!

16

Future Value with a Function

* In the future value graphing program, we see
similar code twice:

Draw bar for initial principal

bar = Rectangle (Point (0, 0), Point(l, principal))
bar.setFill ("green")

bar.setWidth (2)

bar.draw (win)

bar = Rectangle (Point (year, 0), Point(year+l, principal))
bar.setFill ("green")

bar.setWidth (2)

bar.draw (win)

17

Future Value with a Function

* To properly draw the bars, we need three
pieces of information.

— The year the bar Is for
— How tall the bar should be
— The window the bar will be drawn In

* These three values can be supplied as
parameters to the function.

18

Future Value with a Function

* The resulting function looks like this:

def drawBar (window, year, height):

Draw a bar in window starting at year with given height

bar = Rectangle (Point (year, 0), Point(year+l, height))
bar.setFill ("green")

bar.setWidth (2)
bar.draw (window)

» To use this function, we supply the three values. If win
Is a Graphwin, we can draw a bar for year O and
principal of $2000 using this call:

drawBar (win, 0, 2000)

19

Functions and Parameters: The Detalls

It makes sense to include the year and the principal in the drawBar function,
but why send the window variable?

The scope of a variable refers to the places in a program a given variable can
be referenced.

Each function is its own little subprogram. The variables used inside of a
function are local to that function, even if they happen to have the same name
as variables that appear inside of another function.

The only way for a function to see a variable from another function is for that
variable to be passed as a parameter.

20

Functions and Parameters: The Detalls

Since the GraphWin In the variable win Is created inside of main, It IS not
directly accessible in drawBar.

The window parameter in drawBar gets assigned the value of win from
main when drawBar IS called.

A function definition looks like this:
def <name>(<formal-parameters>):
<body>

The name of the function must be an identifier
Formal-parameters is a possibly empty list of variable names

21

Functions and Parameters: The Detalls

Formal parameters, like all variables used in the function, are only accessible
In the body of the function. Variables with identical names elsewhere in the
program are distinct from the formal parameters and variables inside of the

function body.

A function is called by using its name followed by a list of actual parameters or

arguments.
<name>(<actual-parameters>)

When Python comes to a function call, it initiates a four-step process.

22

Functions and Parameters: The Detalls

The calling program suspends execution at the point of the call.

The formal parameters of the function get assigned the values supplied by the actual
parameters in the call.

The body of the function Is executed.
Control returns to the point just after where the function was called.

Let’s trace through the following code:

sing ("Fred")

print ()

sing ("Lucy")

When Python gets to sing ("Fred"), execution of main Is temporarily suspended.
Python looks up the definition of sing and sees that it has one formal parameter, person.

The formal parameter is assigned the value of the actual parameter. It's as if the following

statement had been executed:
person = "Fred"

23

Functions and Parameters: The

D t .I
ing (pe)
d m n() erson = "Fred" i g
R o
P f(i) rint (" birthday, d)

person: | "Fred"

Note that the variable person has just

been Initialized.

24

FUNCUONS and Parameters:. | ne
Detalls

* At this point, Python begins executing the body of
s1ndg.

* The first statement is another function call, to happy.
What happens next?

* Python suspends the execution of sing and transfers
control to happy.

* happy consists of a single print, which Is executed and
control returns to where it left off in sing.

25

FUNCUlioONs and Parameters: | ne

Detalls

def E:igii;red“)person = "Fred"def,E::g;??i;gfli————"gii E:?iz(izHappy Birthday to youl!")

print () haPPY() .

sing ("Lucy™") print ("Happy birthday, dear", person + ".")

happy ()
. . pers?n: "F{?d“ . .
* EXxecution continues In this way with two more trips to
happy.

* When Python gets to the end of sing, control returns

to main and continues immediately following the

function call.
26

FUNCUONS and Parameters:. | ne
Detalls

def main () : def zing(person):
sing ("Fred") — happy ()

_ happy ()
p?lnt() print ("Happy birthday, dear", person + ".")
sing ("Lucy")

happy ()

* Notice that the person variable in sing has
disappeared!

* The memory occupied by local function variables Is
reclaimed when the function exits.

* Local variables do not retain any values from one

function execution to the next.
27

FUNCUONS and Parameters:. | ne
Detalls

* The next statement Is the bare print, which
produces a blank line.

* Python encounters another call to sing, and
control transfers to the sing function, with the
formal parameter “Lucy”.

28

FUNCUONS and Parameters:. | ne
Detalls

def main() :
sing ("Fred")
print ()
sing ("Lucy")

* The body of sing Is executed for Lucy with its
three side trips to happy and control returns to

main.

def sing(person) :

_ wypucy happy ()
Qersdn happy ()
print ("Happy birthday, dear",

happy ()

person:

] Lucy n

person +

II.II)

29

FUNCUONS and Parameters:. | ne
Detalls

def main () : def sing(person):

sing ("Fred") happy ()
. happy ()
print () . .
v print ("Happy birthday, dear", person +

sing ("Lucy") happy ()

v

II.II)

30

Functions and Paramters: The Detalls

One thing not addressed In this example was multiple parameters. In this case
the formal and actual parameters are matched up based on position, e.g. the first
actual parameter Is assigned to the first formal parameter, the second actual
parameter Is assigned to the second formal parameter, etc.

As an example, consider the call to drawBar:

drawBar (win, 0, principal)

When control Is passed to drawBar, these parameters are matched up to the

formal parameters in the function heading:
def drawBar (window, year, height):

The net effect is as If the function body had been prefaced with three assignment
statements:

window win
year =

height

N o

principal

31

Deger Dondurme

« Bir fonksiyonun bir deger dondurmesini saglamak icin return ifadesini kullaniilir.

def my_function(x):
a=o*X
return(a)

b=my_function(6)
print(b)

Getting Results from a Function

Passing parameters provides a mechanism for initializing the variables in a
function.

Parameters act as inputs to a function.

We can call a function many times and get different results by changing its
parameters.

We’ve already seen numerous examples of functions that return values to the

caller.
discRt = math.sgrt (b*b - 4*a*c)

The value b*b - 4*a*c Is the actual parameter of math.sqgrt.
We say sqgrt returns the square root of its argument.

33

Functions That Return Values
* This function returns the square of a number:

def square (x) :
return x*x

* When Python encounters return, It exits the function

and returns control to the point where the function was
called.

 |n addition, the value(s) provided in the return

statement are sent back to the caller as an expression
result.

Python Programming, 2/e 34

Functions That Return Values

>>>
9

>>>
16

>>>
>>>
>>>
25

>>>
34

square (3)

print (square (4)

X = 5
Yy = square (x)
print (y)

print (square (x)

)

+ square (3))

Python Programming, 2/e

35

Functions That Return Values

* We can use the square function to write a
routine to calculate the distance between (x,,Y,)

and (X,,Y5).

e def distance(pl, p2):
dist = math.sgrt (square(p2.getX() - pl.getX()) +
square (p2.getY¥ () - pl.get¥Y()))
return dist

Python Programming, 2/e 36

Functions That Return Values

Sometimes a function needs to def SumDiffix, y):
sum=Xx+Yy
return more than one value. fark = x - y
To do this, simply list more return sum. fark
than one expression in the .
c=
return Sstatement. 4=29
a,b=sumbDiff(c, d)
print(a,b)

37

Functions That Return Values

When calling this function,
use simultaneous
assignment.

As before, the values are
assigned based on
position, so s gets the first
value returned (the sum),
and d gets the second (the
difference).

def sumbDiff(x, y):
sum=x+y
fark =x -y

return sum, fark

c=9

d=29
a,b=sumpDiff(c, d)
print(a,b)

numl, num2 = eval(input("Enter two numbers (huml, num2) "))
S, t = sumDiff(numl, num2)
print("The sum is", s, "and the difference is", t)

38

Functions That Return Values

One “gotcha” — all Python functions return a value, whether they contain a return

statement or not. Functions without a return hand back a special object, denoted None.

A common problem is writing a value-returning function and omitting the return!

If your value-returning functions produce strange messages, check to make sure you
remembered to include the return!

39

Functions that Modify Parameters

Return values are the main way to send information from a function back to the caller.
Sometimes, we can communicate back to the caller by making changes to the function
parameters.

Understanding when and how this is possible requires the mastery of some subtle details
about how assignment works and the relationship between actual and formal parameters.

Suppose you are writing a program that manages bank accounts. One function we would
need to do is to accumulate interest on the account. Let’s look at a first-cut at the function.

def addInterest (balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

40

Functions that Modify Parameters

The Iintent Is to set the balance of the account to a new value that includes the
Interest amount.

Let’s write a main program to test this:
def test () :
amount = 1000
rate = 0.05
addInterest (amount, rate)
print (amount)

We hope that that the 5% will be added to the amount, returning 1050.

>>> test ()
1000

What went wrong? Nothing!

41

Functions that Modify Parameters

e The firsttwo lines of the ™ ionee - meionee = G+ rate)
test function create two vaee T e
local variables called ot~ 1000
amount and rate which nteraat (amount, eate
are given the initial printtanesnt

values of 1000 and
0.05, respectively.

42

Functions that Modify Parameters

® Control then transfers to the def addInterest (balance, rate):

newBalance = balance * (1 + rate)

addlntereSt funCthn balance = newBalance
* The formal parameters def test():
balance and rate are amount = 1000
. rate = 0.05
assigned the values of the addTnterest (amount, rate)
actual parameters amount print (amount)
and rate.

 Even though rate appears
In both, they are separate
variables (because of scope
rules).

Functions that Modify Parameters

def addInterest (balance, rate):

* The assignment of the newBalance = balance* (1 + rate)

parameters causes the balance = newsalance
variables balance and aer testo:

rate In addInterest amount = 1000

rate = 0.05

tO refer tO the ValueS Of adclilzteresté)amount, rate)
print (amoun
the actual parameters!

44

Functions that Modify Parameters

def test(): oun® def addInterest(balance, rate):
amount = 1000 xaﬂce‘fga\"e newBalance = balance * (1 + rate)
rate = 0.05 2= _ace” balance = newBalance

addInterest (amount, rate)

print (amount)
/

amount B 1000
— rate

—_

rate —r—®{ 0.05

| balance

Functions that Modify Parameters

def addInterest (balance, rate):

» Executing the first line of

newBalance = balance * (1 + rate)
addInterest Ccreates a balance = newBalance
new variable, def test () :

amount = 1000
rate = 0.05

addInterest (amount, rate)

newBalance.

e balance Is then

assigned the value of
newBalance.

print (amount)

46

Functions that Modify Parameters

e balance hOW refe rs tO def addInterest(balance, rate):

newBalance = balance * (1 + rate)

the same Value as balance = newBalance
newBalance, but this def test()

had no effect on amount e

in the Test funCtiOn_ addInterest(amount, rate)

print (amount)

47

Functions that Modify Parameters

o't
def test(): ;awﬂu def addInterest(balance., rate):
' a“Ce e newBalance = balance * (1 + rate)
amount = 1000 palt “yab
rate = 0.05 fate balance = newBalance
addInterest(amount.rate)
print{amount)
// balance
Y
amount — (1000
— - rate
Y
rate — | 0.05
- // newBalance

<™
1050

Functions that Modify Parameters

Execution of addInterest

has completed and control
returns to test.

The local variables, including
the parameters, In
addInterest go away, but
amount and rate In the
test function still refer to

their initial values!

def addInterest (balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

test () :

amount = 1000

rate = 0.05

addInterest (amount, rate)

print (amount)

Python Programming, 2/e 49

Functions that Modify Parameters

To summarize: the formal parameters of a function only receive the values of
the actual parameters. The function does not have access to the variable that
holds the actual parameter.

Python is said to pass all parameters by value.

Some programming languages (C++, Ada, and many more) do allow variables
themselves to be sent as parameters to a function. This mechanism is said to
pass parameters by reference.

When a new value is assigned to the formal parameter, the value of the
variable in the calling program actually changes.

Since Python doesn’t have this capabillity, one alternative would be to change
the addInterest function so that it returns the newBalance.

50

Functions that Modify Parameters

def addInterest (balance, rate):

newBalance = balance * (1 + rate)

return newBalance

deft test():
amount
rate =
amount

0

1000
.05
addInterest (amount,

print (amount)

test ()

rate)

51

Functions that Modify Parameters

Instead of looking at a single account, say we are writing a program for a bank
that deals with many accounts. We could store the account balances in a list,
then add the accrued interest to each of the balances in the list.

We could update the first balance in the list with code like: balances[0] =
balances[0] * (1 + rate)

This code says, “multiply the value in the 0™ position of the list by (1 + rate)
and store the result back into the 0t position of the list.”

A more general way to do this would be with a loop that goes through positions
0,1, ..., length — 1.

52

Functions that Modify Parameters

addinterest3.py
i Illustrates modification of a mutable parameter (a list).

def addInterest (balances, rate):
for 1 1n range(len (balances)) :
balances|[1] = balances[1] * (l+rate)

def test () :
amounts = [1000, 2200, 800, 360]
rate = 0.05
addInterest (amounts, 0.05)
print (amounts)

test ()

53

Functions that Modify Parameters

 Remember, our original code had these values:
(1000, 2200, 800, 360]

* The program returns:
[1050.0, 2310.0, 840.0, 378.0]

« What happened? Python passes parameters by
value, but It looks like amounts has been

changed!

54

Functions that Modify Parameters

 The first two lines of
test create the

def addInterest (balances, rate):
for 1 in range(len(balances)):

balances[i] = balances[i] * (l+rate)

def test () :

variables amounts and inte — (1000, 2200. 800. 3601

rate.

rate = 0.05
addInterest (amounts, 0.05)

print (amounts)

 The value of the variable
amounts IS a list object

that contains four int
values.

Python Programming, 2/e

55

Functions that Modify Parameters

def test(): def addInterest (balances, rate):
balances[i]l] = balances[i] * (l+rate)

rate = 0.05 =
addInterest (amounts, rate)
* print amounts

cate] —|— =

amounts| —1+—— []

AN

/ % \ N
s o (o) (]

Python Programming, 2/e

56

Functions that Modify Parameters

def addInterest (balances, rate):

¢ NeXt, addIntereSt for 1 1n range(len(balances)):

executes. The loop goes balances[i] = balances[i] * (Lirate)
through eaCh |ndeX In - ;rencsntlr(r)cs = [1000, 2200, 800, 360]

the range O’ 1’ "t Iength zzzinze;:i(amoum, 0.05)

-1 and updates that print (amounts)

value iIn balances.

Python Programming, 2/e

57

Functions that Modify Parameters

def test(): def addInterest (balances, rate):
amounts = [1000,2150,800,3275] for i in range(len(balances)):
rate = 0.05 balances[i] = balances([i] * (l+rate)

addInterest (amounts, rate)
print (amounts)

e | 1 /

amounts — [,

L — rate

| _— balances

~ N N N A
1050| |2310| | 840 378
- J J J J
~ N N N A
1000((2200| | 800 360
- J AN J J

Python Programming, 2/e

Functions that Modify Parameters

* Inthe diagram the old values °* pcnrerest aanees, e
. Oor 1 1n range en alances .
are left hanging around to blances 1] - balomcos(i] *
emphasize that the numbers (1+rate)
In the boxes have not

def test():
changed, but the new_values mounts — 11000, 2200. 800, 3601
were created and assignhed rate = 0.05
|nto the I|St addInterest (amounts, 0.05)

print amounts

* The old values will be
destroyed during garbage
collection.

Python Programming, 2/e

59

Functions that Modify Parameters

When addInterest terminates, the list stored in amounts now contains the
new values.

The variable amounts wasn’t changed (it's still a list), but the state of that list
has changed, and this change is visible to the calling program.

Parameters are always passed by value. However, if the value of the variable

IS a mutable object (like a list of graphics object), then changes to the state of
the object will be visible to the calling program.

This situation Iis another example of the aliasing issue discussed in Chapter 4!

60

Functions and Program Structure

So far, functions have been used as a mechanism for reducing code
duplication.

Another reason to use functions Is to make your programs more modular.

As the algorithms you design get increasingly complex, it gets more and more
difficult to make sense out of the programs.

One way to deal with this complexity is to break an algorithm down into smaller
subprograms, each of which makes sense on its own.

61

Functions and Program Structure

def main () :

Introduction

print ("This program plots the growth of a 10 year
investment.")

Get principal and interest rate

principal = eval (input ("Enter the initial principal:

"))

apr = eval (input ("Enter the annualized interest rate:

"))

Create a graphics window with labels on left edge
win = GraphWin ("Investment Growth Chart", 320, 240)
win.setBackground ("white")

win.setCoords (-1.75,-200, 11.5, 10400)

Text (Point (-1, 0), ' 0.0K'").draw(win)

Text (Point (-1, 2500), ' 2.5K').draw(win)

Text (Point (-1, 5000), " 5.0K').draw(win)
Text (Point (-1, 7500), ' 7.5k').draw(win)
Text (Point (-1, 10000), '10.0K').draw(win)

Draw bar for initial principal

drawBar (win, 0, principal)

Draw a bar for each subsequent year
for year in range(l, 11):
principal = principal * (1 + apr)

drawBar (win, year, principal)

input ("Press <Enter> to quit.")

win.close ()

Python Programming, 2/e

62

Functions and Program Structure

* We can make this program more readable by
moving the middle eight lines that create the
window where the chart will be drawn Into a
value returning function.

63

Functions and Program Structure

def createlabeledWindow () :
window = GraphWin ("Investment Growth Chart",
window.setBackground ("white™)
window.setCoords (-1.75,-200, 11.5, 10400)
Text (Point (-1, 0), ' 0.0K').draw (window)
Text (Point (-1, 2500), " 2.5K').draw(window)
Text (Point (-1, 5000), " 5.0K') .draw(window)
Text (Point (-1, 7500), ' 7.5k').draw(window)
Text (Point (-1, 10000), '10.0K'"').draw (window)

return window

320,

240)

def main () :

print ("This program plots the growth of a 10 year
investment.")

principal = eval (input ("Enter the initial principal:
"))

apr = eval (input ("Enter the annualized interest rate:
"))

win = createlabeledWindow ()

drawBar (win, 0, principal)
for year in range(l, 11):
principal = principal * (1 + apr)

drawBar (win, year, principal)

input ("Press <Enter> to quit.")

win.close ()

64

Lambda Fonksiyonlari

Python’'da, lambda anahtar kelimesi anonim fonksiyonlar olusturmak icin kullantlir.
Bunlar esas olarak onceden tanimlanmis isimler icermez.

Uyarlanabilir fonksiyonlar olusturmak icin iyidir ve bu sayede etkinlik yonetimi icin
yidir.

Ornek:

I'nin 2 ile carpim degerini donduren anonim bir fonksiyon:
myfunc = lambda i: 1*2
print(myfunc(2))

Lambda Fonksiyonlari

Lambda tanimli fonksiyonlar, burada gosterildigi gibi birden fazla tanimli girise
sahip olabilir

Ornek:

I'nin 2 ile carpim degerini donduren anonim bir fonksiyon:
myfunc = lambda x,y: x*y
print(myfunc(3,6))

Lambda Fonksiyonlari

Asagidaki ornekte gosterildigi gibi, calisma zamaninda anonim fonksiyonlar olusturdugunuzda,
lambda’nin gucu daha iyi anlasilir.

Burada myfunc adinda tanimlanmis fonksiyonu goruyoruz, which creates an anonymous

function that doubles some on-the-fly variable | with a just-in-time variable n representing our
multiplier.

Ornek:
I'nin 2 ile carpim degerini donduren anonim bir fonksiyon:
def myfunc(n):

return lambda I: I*n

doubler = myfunc(2)

tripler = myfunc(3)

val =11

print("Doubled: " + str(doubler(val)) + ". Tripled: " + str(tripler(val)))

